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A series of new theoretical equations for predicting the domain size in interpenetrating polymer 
networks, IPN's, and related materials was derived. The equations are based on a domain formation 
process comprising the crosslinking density of each polymer, mixing and 'demixing thermodynamics, 
network swelling and elastic deformation of each polymer network, and the interfacial tension between 
two polymers. The new equations are applicable to both crosslinked and linear materials. The 
experimental variables required to determine the domain size include the volume fraction and crosslink 
level of each polymer (or molecular weight, if linear), the interfacial tension, and the temperature. The 
theory was applied to poly(n-butyl acrylate)/polystyrene IPN's and semi-IPN's. The results are also 
compared with the earlier theory of Donatelli et  al. 
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INTRODUCTION 

One of the most challenging areas today concerning phase 
separated multipolymer materials relates to the 
prediction of the domain sizes. Polymer blends, grafts, 
blocks and interpenetrating polymer networks, IPN's, 
yield very different dimensions 1-8. Much theoretical 
work on domain size prediction has been done on block 
polymers 9-23, but not on other multipolymer systems. 

For interpenetrating polymer networks, Donatelli et 
al. 24 recently derived an equation especially for semi- 
IPN's of the first kind (polymer I crosslinked, polymer II 
linear) and extended this to IPN'S by assuming that the 
molecular weight of polymer II is infinite. Michel et al. 25 
solved the Donatelli equation considering several 
boundary cases, and reinterpreted the constants involved. 
However, because of the semiempirical nature of the 
Donatelli equation, its intrinsic shortcomings limit its 
applicability. A new set of theoretical equations is 
proposed herein which considers the domain diameters 
IPN's and semi-IPN's. 

DERIVATION OF THE BASIC EQUATION FOR 
IPN DOMAIN DIAMETERS 

Method of sequential I P N  formation 
An interpenetrating polymer network, IPN, is defined 

as a combination of two polymers in network form, at 
least one of which is synthesized and/or crosslinked in the 
immediate presence of the other. In forming a sequential 
IPN, the synthetic steps are taken in the following order: 

(a) Polymer I is synthesized 
(b) Polymer I is crosslinked 
(c) Monomer II is swollen in 
(d) Monomer II is polymerized (with crosslinking) 
(e) Phase separation between I and II takes place. 

In the above, (a) and (b) may be simultaneous in time, as 

with vinyl polymerizations using multifunctional 
crosslinkers. This is the case of the data to be analysed 
below. Step (e) is usually simultaneous with (d), but starts 
after (d) has proceeded to a certain extent. 

A principal objective of this paper will be to predict the 
domain diameters formed during step (e). 

Physical model 
A working model of the domain structure in IPN's and 

related materials is depicted in Figure 1. Polymer II 
constitutes a spherical core and is in a contracted 

I 

Figure 1 Working model of a domain. A spherical domain of 
polymer tl surrounded by a shell of polymer I. R o = radius of an 
imaginary spherical region containing both polymers I and II. 
R = radius of a polymer II domain 
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Figure 2 S i m p l i f i e d  path o f  d o m a i n  f o r m a t i o n  

(deformed) state, while polymer I surrounds the core and 
is in an expanded (deformed) state. While the model in 
Figure 1 is over simplified, it describes the physical 
situation of a spherical domain. Related to this model, 
several essential relationships are evolved: Let ~01 and ~o 2 
be the volume fractions of polymer I and II, and c~ the 
linear deformation ratio of polymer network I frorr 
swelling. 

The following simple geometric constraints will be 
noted: 

q01 + q 0 2  = 1 (1) 

R 3 =(1 3 3 - -  (P l )R o  = (P2Ro (2) 

0~ = (pl 1/3 (3) 

Subscripts 1 and 2 denote polymer (or monomer) I and 
polymer (monomer) II, respectively, throughout, and R is 
the radius of a polymer II domain. 

Process path 
Several assumptions are made for the derivation: 

(1) Thermodynamic equilibrium processes exist 
throughout the development of the domain formation. 

(2) The domains have identidal diameters with a 
spherical shape. 

(3) The polymer networks obey Gaussian statistics. 
(4) A sharp interracial boundary exists between the two 

phases. 

The process path of domain formation is illustrated in 
Figure 2. Initially, in state 1, network I is completely 
separated from monomer II (plus crosslinker). In state 2, 
polymer network I is swollen with the monomer II 
mixture. The path from state 1 to state 2 is accompanied 
by the mixing (dilution) between polymer I and monomer 
II, and mutual concomitant expansion of polymer I 
caused by swelling with monomer II mixture. The free 
energy of polymerization on going from state 2 to state 3 
will be ignored, as it is not of interest to this problem. Also, 

the enthalpic 1, 2 contact energies between monomer II 
and polymer I will be assumed to be the same as the 
polymer II-polymer I enthapic contact energies. 

State 3 is the hypothetical, mutually mixed state, where 
polymers I and II are mixed and mutually diluted. 
Network I is stretched in the Flory-Rehner mode z6, 
although maximum swelling (with excess monomer) is not 
assumed. Demixing (phase separation) between polymer I 
and polymer II, with concomitant deformation of 
polymer II with further deformation of polymer I into a 
shell leads to state 4. 

State 4 shows a phase-separated state, with a spherical 
domain of polymer II forming as the core, surrounded by 
polymer I, deformed into a spherical shell. In reality, 
however, the core and shell are not sharply demarked, 
with some chains mechanically trapped in the wrong 
phase. Since the distance of diffusion required is less than 
500 A in most cases, this is of the same order as the 
dimensions of the chains themselves. 

Referring to Figure 2, the molecular rearrangements 
taking place on transforming state 3 to state 4 requires 
amplification. Certainly no covalent bonds are broken 
during the process, as would be required from a literal 
interpretation of the model. Instead, phase separation 
ensues at an early stage of the polymerization of monomer 
II, when the free energy of mixing becomes positive and 
the second derivative of the free energy of mixing with 
respect to composition is negative. This is probably at or 
before the gel stage for many IPN systems. Thus, the 
molecular migration begins earlier than illustrated in the 
model, and hence state 3 is hypothetical, for calculation 
purposes only. 

Thermodynamics of the process 
For a closed system at constant pressure and 

temperature, the Gibbs free energy (hereafter free energy) 
change, AG, is given by 

AG=Z(AH,,,+~)-TZ(AS~,i+,) (i= 1,2,3) (4) 

where AH~,~ + 1 '  ASi,i + 1 represent the enthalpy and entropy 
changes involved in the process from state i to state i+  1, 
respectively; and T is the absolute temperature. 

Extending equation (4) to the domain formation 
process, the free energy change for polymer II domain 
formation, AGd, can be expressed as 

3 3 

AGd= ~ (AH,. ,+I)-  T ~ (AS,.,+I)+AG , (5) 
i=a  i = l  

where AGi represents the interfacial free energy change for 
domain formation. 

The quantity AG i is a thermodynamic property related 
to the process taking place from state 3 to state 4. Figure 2 
indicates that the path from state 1 to state 3 via state 2 can 
be replaced by the direct path from state 1 to 3. Therefore, 
equation (5) reduces to 

AGd=AH13+AH34-T(ASa3+AS34)+AGi (6) 

In fact, AH 13 and AH34 are the heat of mixing and the heat 
of demixing (the negative heat of mixing) between 
polymers I and II, respectively, such that the sum of these 
two terms can be assumed to be zero. This, of course, is an 
approximation which assumes that the contact heats 
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between monomer II and polymer I do not change on 
polymerization. 

The phase separation from state 3 to state 4 involves 
configurational and conformational rearrangements 
which are not necessarily balanced by the transformation 
from state 1 to state 3. There will be an entropic 
component to each rearrangement and they will not 
necessarily cancel each other. (The free energies of 
polymerization are not considered.) 

The quantity AS 13 is equal to the sum of the entropy of 
mixing, AS,,, and the entropy change for the elastic 
deformation of polymer I being swollen with polymer II, 
ASI~w . The quantity AS34 is equal to the sum of the entropy 
change of demixing, ASam; the rearrangement entropy 
change for elastic deformation (contraction of the 

II . polymer II network upon deswelling, ASa~ ~, and the 
entropy change for elastic deformation (biaxial inflation) 
of polymer I network, ASI I. Again, AS,, and ASa, . cancel 
each other, ending up zero. The interfacial free energy 
change, AG~ consists of the interfacial free energy change 
for quiescent domain formation, AG °. A term for the 
entropy change on placing polymer I and II molecules in 
each domain, ASp, must also be added. In summary, the 
free energy change for polymer II domain formation can 
be expressed as follows: 

AG e = - T(ASIs,~ + AS, + AS~I~w + AS~i) + a a  ° (7) 

The superscripts I and II indicate changes for polymers I 
and II only. 

In the following sections, each of the thermodynamic 
quantities in equation (7) will be developed. 

Entropy change for the elastic deformation of polymer I by 
swelling with polymer II 

Polymer network I undergoes an isotropic deformation 
by being swollen with polymer II, which gives rise to an 
entropy change. The entropy change upon affine elastic 
deformation is given by 26 30 

V t 
ASI~w = - ~R(3~ 2 - 3 - In ~3) 

Z 
(8) 

where v' is the number of moles of effective network 
chains, ~ represents the linear deformation ratio upon 
isotropic swelling, and R represents the gas constant. 

Then, from equation (2) and Figure 1, 

, 4 3 ~(@1~ v D 3 
Vl = ~ R o @ l v  I = ~ t ~ 2 2 )  1 2 

(9) 

where 0 2 is the diameter of the polymer II domain and v 1 
is the number of effective network chains (in moles) of 
polymer I per unit volume of dry polymer I. 

The quantity ~ is equal to @i-1/3, as defined in equation 
(3). Therefore, ASI~w is finally expressed as 

ASlw = -;~2C;12)v1R(3~)1213--34-1n +I)D~ (10) 

Rearrangement entropy change 
The thermodynamic probability, fl, of placing N 1 

polymer I linear molecules by N 2 polymer II linear 
molecules into the shell domain and its core could be 
expressed as 
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~=@lNt@2 N2 (11) 

where @1 and @2 represent the volume fraction of the shell 
and the core, respectively. 

The entropy change, AS, and f~ are related by the 
Boltzmann equation 

AS = - kin f2 (12) 

where k is Boltzmann's constant. 
Combining equations (11) and (12), the rearrangement 

entropy change, ASp,.Of placing the polymers I and II in 
domains and expressing N 1 and N 2 in moles yields 

ASp= - R ( N  1 In @1 4-N2 In @2) (13) 

Then, referring to Figure 1 and equation (2), 

and 

4 3 R3)~11 7"C(@1~( Pl  ~O 3 (14) = t@AtMh-) 

N2_ 4R3( P2 "~-- ~:/" P2 "~D 3 (15) 

where Pl and P2, and M 1 and M 2 represent the densities 
and molecular weights of polymers I and II, respectively. 

Substituting equation (14) and equation (15) into 
equation (13), the rearrangement entropy is finally 
expressed as 

zc~[¢1 P l .  +~_~221 n ~bz)D~ ASp= - ~ l l t ~ i n  ~)1 (16) 

Entropy change Jbr elastic deformation of polymer II 
Polymer II is polymerized in the presence of polymer I 

such that polymer II is in a swollen state. The swollen 
polymer II then deswells into the spherical core, which 
constitutes an isotropic contraction type of deformation. 
Therefore, again from equation (9) and equation (2), 

4 ~ ~ 3 
v2 = ~zR~@2v2 =~v2D2 (17) 

where v 2 is the number of moles of elastically effective 
polymer II network chains, not considering the total 
volume. The polymer II linear contraction is given by 

/ @ \1/3 
C(~ "g2 t@ 1 4- @2) =@1/3 (18' 

such that 

AS~Isw = --l~2v2R(3@2/3 -- 3 - - I n  @g)Dz 3 (19) 

Entropy change for biaxial elastic deformation (inflation of 
polymer I) 

As the domain model in Figure 1 indicates, polymer I is 
biaxially deformed into a spherical shell. The deformation 
entropy change, AShy, is related to different strains in 
different directions and hence could be represented in 
terms of 2 x, 2 r and 2 z. Evaluation of AS~f is achieved by 
working out the geometry of biaxial deformation. As 
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Figure 3 Work ing geomet ry  fo r  biaxial de fo rmat ion  -- I 

depicted in Figure 3, an element in a sphere of the swollen 
network ends up strained and in a new location in the 
spherical shell. The volume of the isotropically swollen 
element, AV1, equals A X I A Y 1 A Z  r 

U p o n  demixing and moving to rE, its volume be- 
comes V2= ~b 2 A X 2 A Y 2 A Z 2 =  q~IAX2AZ2 (i.e. biaxially 
deformed). 

The entire shell at r I moves  to r 2 upon  demixing and is 
strained such that  

i.e. 

4nr2dr2 
tp 1 - 4nrzl dr 1 (20) 

dr2 = q)l dr1 (21) 

Let %~ be the strain rat io  in radial  direction, then 

2 dr2 r 1 
CZ=s-- dr I =~o1~ (22) 

The area ratio of the shells at r 2 and r 1 is 
2 2 4nrz /4nq = 2 2 r2/r I such that  the strain rat io in x direction is 

expressed as 

f r2"~ 1/2 r 2 

%~=\r~11] =r~ 

Since the deformat ion  is biaxial, 

(23) 

/ r  2\1/2 t 

° % = ~ r i )  =~-1 (24) 

N o w  it is necessary to find r 2 in terms ofr I and ~0~. After 
phase separat ion,  the mater ial  which was inside r I resides 
in a spherical shell between R (Figure 1) and r2, as 
deformed (see Figure 4), where R is the final value for r 2 
after phase domain  format ion  is complete.  Then: 

such that  

4 3 4 3 
~rcrl q91 = ~n(r 2 -- R 3) (25) 

r 2 = ( R  3 At- (Plr l3) 1/3 (26 )  

Substituting equation (2) into equation 26), 

r 2 = {Roa(1 - q~,)+ tplr3) 1/3 (27) 

Recognizing tha t  '~x = ~ %,, equat ions (3), (23) and (27) can 
be combined to give 

2x=Cp?I/3{R~(1 - - (p,)q-¢p,r~} l /3/ r  I (28) 

Let r a equal f R  o, such that  f represents a fractional 
radius position going f rom 0 to 1 over  the sphere. Then, 

2= = 2 =tp~-,/3{R3(1 3 3 1/3 - 1  - q ~ l ) + q ~ f  Ro} ( fRo)  (29) 

q~2f-  2x = 2y = {1  "~- ~ 1  3} 1/3 (30) 

Likewise, f rom 2= equalling e times %s, and equat ions 
(3), (22) and (27), 

2z = - 1 / 3  2 3 ~ ~31--2/3 
q) l  q ) l r l  {No(1  - ~ l ) q -  (31)  t//1 t l )"  

For  a spherical shell of radius r 1 and thickness dq ,  
its volume is 4nr~dr 1 which contains vl~)a(4nr~)dr 1 
elastically effective ne twork  chains. 

F r o m  a considerat ion of the en t ropy  change on affine 
deformat ion via swelling 26- 29. 

I __Vl 2 2 2 d(ASdf)- ~-Rq~ (4nrl)(2 x + 2 r + 22 - 3 - In 2x2r2z)dr 1 

(32) 

Figure 4 Work ing geomet ry  f o r  biaxial de fo rma t i on  -- I I  
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The quantity In 2x2r2 ~ is seen to equal zero. 

d(ASIz)=4v,(~zz)RD32{2f2(l+~xxf-3) z/3 

(32a) 

d(malf)=~!l)l(~22)WO3{2f2(l-~-~l f 3)  2/3 

(32b) 

Integrating equation (32b) from f = 0  to f = l  3°, the 
entropy change for biaxial elastic deformation of polymer 
I is finally expressed as 

ASlf=4Vl a ( 2 d~1/3 - V'l v'l , ~ 4 / 3  ~l)D2 3 (33) 

Interfacial free energy chanye for domain formation 
The interfacial free energy change for domain 

formation is brought about from the intrinsic interracial 
tension between the two polymers, 7 °. This can be 
expressed as 

AG°=rc?°O2 z (34) 

for spheres. 
Now, the free energy change for domain formation, 

AG e, can be expressed by substituting equations (10), (16), 
(19), (33) and (34) into equation (7). After appropriate 
manipulation and rearrangement, AG is given by 

AG'=-6RTI-~01102 M, p l l n  q~l + M~Z2ln (P2 } 

/ 1 \  
+ V~I [ ~  ~(3pI/3 -- 3~0~/3 --(t01 In q)l) 2\%f 

-~(3P2z/3- 3 -  In ~02)1D23 + ~zT°O 2 

(35) 

In order to determine the domain size, 02,  which gives a 
minimum in the free energy, the first partial derivative of 
equation (36) with respect to D2, (~(AGa)/~3D2, is equated to 
zero and solved for D2, i.e. 

0(&Ga) ~RTI_  {~22 ~aaln qo ' t~/)2 -- 71" (Pl Pl 'l-m--~2221n q~2} 

2\q~z}wv'l - ' r l  ~°,ln CPl) 

--~(3(p2/3- 3 -  In pz)]D 2 + 2roy°D2 =0 (36) 

Domain sizes in IPN's: J. K. Yeo et al. 

Thus solving for D 2 

D 2 = 47°[RT(Av~ + By 3 - C)] - 1 (37) 

where 

A = 1 2 ( ~ 3  ~b~/3- 3 ~b4/3- ~bl In ~bl) (38) 

= ; I n  ~b 2 - 3 ~b~/3 + 3) (39) B 

C = ~bl p 1 In + ~221n (40) 

Thus, equation (37) provides O 2 in terms of the volume 
fraction and crosslink density of each component, and the 
interfacial tension. Terms for molecular weight are 
provided, if applicable. Specific forms of equation (37) for 
individual cases will be derived in the next section. 

SPECIFIC FORMS FOR THE EQUATIONS 

Characteristics 
The experimental variables required for equation (37) 

are the volume fraction, density, crosslink density, 
molecular weight, interfacial tension and temperature. 

All of these variables are measurable experimentally or 
obtainable by calculation from experiment. 

Equation (37) can be applied to various IPN's cases in 
specific forms. A few of the most important follow. Others 
are developed in ref. 30. 

(1) The case of v~ ha0 and v 2 :p0 for sequential IPN's: 
With M 1 = M 2 = oo equation (37) is simplified to 

D2 =_4y°[RT(AVl + Bv2) ] - 1 (41) 

Equation (41) predicts that the domain diameter of 
polymer II depends on the interfacial tension as well as on 
the crosslink densities of both networks I and II. 
However, an evaluation of the relative magnitudes of the 
constants A and B indicate that v 1 is about 10 times as 
important as v 2. 

(2) The Case of v 1 ¢ 0  and v 2 =0: 
This is a semi-IPN of the first kind. With M~ = 

equation (37) reduces to 

(3) The case of v I =0 and v z =0: 
This is the case of semi-IPN of the second kind. With 

M 2 = ~ ,  equation (37) reduces to 

POLY(n-BUTYL ACRYLATE)/POLYSTYRENE 
IPN'S AND RELATED MATERIALS 

The present authors have carried out morphology studies 
using TEM on poly(n-butyl acrylate)/polystyrene, 
PnBA/PS, IPN's and related materials TM. 

Table ! shows the domain sizes for this system, 
illustrating a wide range of crosslink levels. Column A 
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Table 1 Experimental and theoretical domain sizes for  poly(n-buty l  acrylate)/polystyrene IPNs and semi ]PNs 

Variables 

v x 10 s (mol cm -3 )  Volume 
System* M x 10 - s  (g mol -~  ) ratio 

Domain diameter, D 2 (~,) 

Experiment 

Theory,  3 '0 = 3.65 dynes cm - 1  
A B C 

v 1 = 3.7 25/75 800 845 1170 447 
v 2 = 21.8 40/60 650 644 883 362 

50/50 550 572 725 321 

IPN v 1 = 21.8 25/75 200 207 200 141 
v 2 = 21.8 40/60 170 169 148 115 

60/40 150 143 98 93 
p 2 = 21.8:const 
v I = 3.7 550 572 725 321 
v I = 14.0 50/50 260 224 192 137 
v 1 = 21.8 195 154 124 103 
vl = 25.0 120 136 108 94 

v~ = 3.7 25/75 1250 1314 1037 441 
M 2 = 3.0 40/60 1000 1084 804 359 

Semi-1 
v~ = 21.8 25/75 250 227 193 140 
M 2 = 3.0 60/40 180 161 97 92 

Semi-2 M~ = 2.0 33/67 3330 3260 -- -- 
v 2 = 10.0 

* TEGDM for  crosslinker I and DVB for  crosslinker II 
A Present theory 
B The linear form of Donatell i  equation, equation (44) 
C The cubic form of Donatell i equation, equation (45) 

illustrates the present theory. Columns B and C of Table 1 
contain the calculated values of the domain diameter 
according to linear and cubic forms of the Donatelli 
equation, i.e., the linear form24: 

I - /1 \ :"  (~2~ 1 1] 

and the cubic form: 

(44) 

23(  ) vlD2 (92 (~lVl D2 2y°q)2 
c2K 2 O1 -b M2 2 RT (45) 

where c, K( = ro/M 1/2) are constants, and ~0 represents the 
volume fraction. In the calculation of the domain sizes in 
column C (equation (45)), c=x /2  and K = S x l 0  -9, 
respectively. The quantity v I is defined for the dry 
network I state 2s. 

Both the present theory and the Donatelli, et al., theory 
show that the domain sizes are sensitive to the value of 
interfacial tension. 

It should be noted that equations (44) and (45) do not 
provide any values for the semi-2 IPN case. 

DISCUSSION 

Several points developed in the theory require 
amplification. First, to what extent is true thermodynamic 
equilibrium attained in the development of the phase 
domains? Certainly, there are some mechanically 
entrapped chains. It might also be that spinodal 
decomposition processes rather than binodal phase 
separation actually takes place. If so, the extent of phase 
separation might be controlled by kinetic rather than 
thermodynamic considerations. 

However, in the real case, phase separation begins 
before the gelation stage, mitigating (but not eliminating) 
the problem. 

Secondly, the model in Figure 2 needs amplification. 
The free energy of polymerization is ignored, as not 
pertinent to this problem, especially under the 
assumption of an isothermal process. More importantly, 
the going from state 3 to state 4 seems to require the 
passage of one chain through another. State three is only 
hypothetical, it must be emphasized, and used as a 
convenient mathematical model. As per above comment, 
phase separation begins before polymerization of 
network II is complete. The real limitation is the 
development of the mechanically entrapped chains. 

Lastly, equation (37) and the model assumes the 
development of discontinuous, spherical domains. In a 
recent paper(32), Widmaier and Sperling showed that for 
midrange compositions of the poly(n-butyl 
acrylate)/polystyrene IPN's, significant amounts of dual 
phase continuity exist. The development of discontinuous 
spheres occurs only for very low amounts of polymer II, 
below about 30~. 

CONCLUSIONS 

A statistical thermodynamic theory describing IPN 
domain formation was developed and then extended to 
the case of semi-IPN's; each theoretical equation 
provided the polymer II phase domain size, O 2. This 
model was tested with various IPN's and related materials 
from the literature, and found to predict variations in the 
domain size over a wide range of overall composition, 
crosslink density, interfacial tension, and molecular 
weight (see also ref. 30). 

The present theory can be contrasted with that of 
Donatelli et al. in several ways: (1) In the present theory, 
polymer I network undergoes an isotropic swelling and 
then subsequent deformation induced by phase 
separation. However, the Donatelli equation considers 
only polymer I deformation of isotropic swelling; 
deformation due to phase separation is implicit rather 
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than explicit. (2) A contracted polymer II network is 
considered in the present model, while an unperturbed 
polymer II network remains in the Donatelli model. (3) 
The present model can be extended to the case of semi-2 
IPN's and SIN's. (4) The Donatelli cubic equation 
contains a semi-empirical constant, c. 

Both theories, however, utilize the interfacial tension 
between polymers I and II in a similar manner. While 
experimental values are known for some systems, the best 
fit values otherwise are in the range predicted by theory. 

Some further comments about the present domain 
model should be made: The core-shell spherical domain 
model has important intrinsic limitations in the cases of 
extreme composition ratios and/or high crosslink 
densities. These morphologies are featured by the 
presence of polymer II phase connectivity and irregularly 
shaped domain structures. Thus it would be desirable to 
extend the present reasoning to the morphologies based 
on other presumable geometric domain shapes, such as 
cylindrical arrays or alternating lamellae. 
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